圖書盲袋,以書為“藥”
歡迎光臨中圖網(wǎng) 請 | 注冊
> >
Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù)

Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù)

出版社:東南大學(xué)出版社出版時(shí)間:2013-05-01
開本: 16開 頁數(shù): 288
中 圖 價(jià):¥38.9(6.7折) 定價(jià)  ¥58.0 登錄后可看到會員價(jià)
加入購物車 收藏
運(yùn)費(fèi)6元,滿39元免運(yùn)費(fèi)
?新疆、西藏除外
本類五星書更多>

Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù) 版權(quán)信息

Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù) 本書特色

     在使用關(guān)系型數(shù)據(jù)庫搭建java企業(yè)應(yīng)用時(shí),你可以選擇多種數(shù)據(jù)訪問框架。但是在處理大數(shù)據(jù)的時(shí)候呢?波拉克編著的《spring data(企業(yè)級java的現(xiàn)代數(shù)據(jù)訪問技術(shù)影印版)》這本包含豐富實(shí)踐的指南將為你展示spring data如何使得搭建基于諸如nosql 和hadoop這樣一些新型數(shù)據(jù)訪問技術(shù)的應(yīng)用變得更加簡單。      《spring data(企業(yè)級java的現(xiàn)代數(shù)據(jù)訪問技術(shù)影印版)》通過多個(gè)示例項(xiàng)目,你將了解到spring data如何提供了一個(gè)兼容 nosql特有特性和功能的編程模型,以及它如何幫助你開發(fā)基于諸如數(shù)據(jù)分析、事件流處理和工作流之類用例的 hadoop應(yīng)用。你也將找到那些spring data添加到spring現(xiàn)有jpa和 jdbc中的特性,它們用來實(shí)現(xiàn)基于rdbms的數(shù)據(jù)訪問層。

Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù) 內(nèi)容簡介

    閱讀波拉克編著的《spring data(企業(yè)級java的現(xiàn)代數(shù)據(jù)訪問技術(shù)影印版)》,你將對如下內(nèi)容有深刻的理解:為什么現(xiàn)代的數(shù)據(jù)訪問變得越來越專業(yè)化和分門別類,nosql數(shù)據(jù)存儲的主要分類,spring data如何幫助java開發(fā)人員在當(dāng)前新環(huán)境下有效地開發(fā)。 通過使用spring batch和spring data,我們將能夠徹底地簡化和減少與hadoop交互時(shí)的復(fù)雜性,同時(shí)還能提供可靠性。

Spring Data:企業(yè)級Java的現(xiàn)代數(shù)據(jù)訪問技術(shù) 目錄

forewordprefacepart i. background  1. the spring data project  nosql data access for spring developers  general themes  the domain  the sample code  importing the source code into your ide  2. repositories: convenient data access layers  quick start  defining query methods  query lookup strategies  query derivation  pagination and sorting  defining repositories  fine-tuning repository interfaces  manually implementing repository methods  ide integration  intellij idea  3. type-safe querying using querydsl  introduction to querydsl  generating the query metamodel  build system integration  supported annotation processors  querying stores using querydsl  integration with spring data repositories  executing predicates  manually implementing repositoriespart ii. relational databases  4. jpa repositories  the sample project  the traditional approach  bootstrapping the sample code  using spring data repositories  transactionality  repository querydsl integration  s. type-safejdbc programming with querydsl sql  the sample project and setup  the hypersql database  the sql module of querydsl  build system integration  the database schema  the domain implementation of the sample project  the querydsljdbctemplate  executing queries  the beginning of the repository implementation  querying for a single object  the onetomanyresultsetextractor abstract class  the customerlistextractor implementation  the implementations for the rowmappers  querying for a list of objects  insert, update, and delete operations  inserting with the sqlinsertclause  updating with the sqlupdateclause  deleting rows with the sqldeleteclausepart iii. nosql  6. mongodb:a document store  mongodb in a nutshell  setting up mongodb  using the mongodb shell  the mongodb java driver  setting up the infrastructure using the spring namespace  the mapping subsystem  the domain model  setting up the mapping infrastructure  indexing  customizing conversion  mongotemplate  mongo repositories  infrastructure setup  repositories in detail  mongo querydsl integration  7. neo4j: a graph database  graph databases  neo4j  spring data neo4j overview  modeling the domain as a graph  persisting domain objects with spring data neo4j  neo4jtemplate  combining graph and repository power  basic graph repository operations  derived and annotated finder methods  advanced graph use cases in the example domain  multiple roles for a single node  product categories and tags as examples for in-graph indexes  leverage similar interests (collaborative filtering)  recommendations  transactions, entity life cycle, and fetch strategies  advanced mapping mode  working with neo4j server  continuing from here  8. redis: a key/value store  redis in a nutshell  setting up redis  using the redis shell  connecting to redis  object conversion  object mapping  atomic counters  pub/sub functionality  listening and responding to messages  using spring's cache abstraction with redispartly. rapid application development  9. persistence layers with spring roo  a brief introduction to roo  roo's persistence layers  quick start  using roo from the command line  using roo with spring tool suite  a spring roo jpa repository example  creating the project  setting up jpa persistence  creating the entities  defining the repositories  creating the web layer  running the example  a spring roo mongodb repository example  creating the project  setting up mongodb persistence  creating the entities  defining the repositories  creating the web layer  running the example  10. rest repository exporter  the sample project  interacting with the rest exporter  accessing products  accessing customers  accessing orderspart v. big data  11. spring forapache hadoop  challenges developing with hadoop  hello world  hello world revealed  hello world using spring for apache hadoop  scripting hdfs on the jvm  combining hdfs scripting and job submission  job scheduling  scheduling mapreduce jobs with a taskscheduler  scheduling mapreduce jobs with quartz  12. analyzing datawith hadoop  using hive  hello world  running a hive server  using the hive thrift client  using the hive jdbc client  apache logfile analysis using hive  using pig  hello world  running a pigserver  controlling runtime script execution  calling pig scripts inside spring integration data pipelines  apache logfile analysis using pig  using hbase  hello world  using the hbase java client  13. creating big data pipelines with spring batch and springintegration  collecting and loading data into hdfs  an introduction to spring integration  copying logfiles  event streams  event forwarding  management  an introduction to spring batch  processing and loading data from a database  hadoop workflows  spring batch support for hadoop  wordcount as a spring batch application  hive and pig steps  exporting data from hdfs  from hdfs to jdbc  from hdfs to mongodb  collecting and loading data into splunkpart vi. data grids  14. gemfire: a distributed data grid  gemfire in a nutshell  caches and regions  how to get gemfire  configuring gemfire with the spring xml namespace  cache configuration  region configuration  cache client configuration  cache server configuration  wan configuration  disk store configuration  data access with gemfiretemplate  repository usage  pojo mapping  creating a repository  pdx serialization  continuous query supportbibliographyindex
展開全部
商品評論(0條)
暫無評論……
書友推薦
編輯推薦
返回頂部
中圖網(wǎng)
在線客服