���] ��׃����(sh��)�c�e��׃�Q
�Є�����ӛ����P�ȸ�����ȫԔ��Ʒ���f��>>
-
>
���������Ӻ�������`
-
>
�������ʷ
-
>
�ϘO100��
-
>
����(sh��)�W���}��1200�}
-
>
ϣ��˹:���ϵ����ӡ��İl(f��)���c�l(f��)�F(xi��n)
-
>
���r(n��ng)�ܯB��ʯ:10���|��ǰ�h�ź������ィ��Ĵ�
-
>
����ʷ
��׃����(sh��)�c�e��׃�Q �����Ϣ
- ISBN��9787030193513
- �l�δa��9787030193513 ; 978-7-03-019351-3
- �b����һ���z�漈
- �Ԕ�(sh��)�����o
- ���������o
- ���ٷ��>>
��׃����(sh��)�c�e��׃�Q ������ɫ
�����ǹ����I���I(y��)��W��׃����(sh��)�c�e��׃�Q�p�Z�̲ģ������n�����m�����p�Z�̌W���njW����׃����(sh��)�c�e��׃�Q���������ߕ���������̲�ʹ��Ч�������� �ԡ��p�Z�����ӴΡ����w���������c������Ӣ���p�Z���Ӵμ��|(zh��)���̲���ͬ���W���o��������Ӣ�İ�̌W�n������ӽ̰��Լ����}Ԕ����һ�w�Ą�(chu��ng)����ϵ�л��̲����m����ͨ�ߵȽ�����ͬ�ӴΌWУ�W���W��ʹ��.
��׃����(sh��)�c�e��׃�Q ��(n��i)�ݺ���
������һ������ͬ���n���p�Z�̌W��Ӣ�Ľ̲������߅����౾���P�Ľ�(j��ng)��ԭ��Ӣ�Ľ̲ģ����Շ��ҽ����������n�̵Ļ���Ҫ�����Y(ji��)�϶���Ľ̌W���`����������(n��i)�ݷփɲ�������8������1��6���׃����(sh��)���֣�����complex numbers and functions of a complex variable���͔�(sh��)�c��׃����(sh��)����analytic functions����������(sh��)����complex integrals���ͷe�֣���series������(sh��)����residues������(sh��)����conformal mappings������ӳ�䣩����7�º͵�8���Ƿe��׃�Q����������fourier transform�������~׃�Q����laplace transform��������˹׃�Q�������и��¹�(ji��)������������������}����ÿ�º�Ҳ�����˴������x�����}��������V��Ҫ���y�׳̶ȷ֞�a��b�����
�����ȿ����������ƴ�Wͬ���n�̵��p�Z�̲���Ҳ�ɹ����P���̼��g�ˆT������
��׃����(sh��)�c�e��׃�Q Ŀ�
��1.1 complex numbers and its four fundamental operations
��1.2 geometric representation of complex numbers
��1.3 complex conjugates
��1.4 powers and roots
��1.5 riemann sphere and infinity
��1.6 complex number sets
��1.7 functions of a complex variable
��exercise 1
chapter 2 analytic functions
��2.1 the concept of analytic function
��2.2 necessary and sufficient conditions of analytic functions
��2.3 elementary functions
��exercise 2
chapter 3 complex integrals
�� 3.1 the concept of complex integral
�� 3.2 cauchy integral theorem
�� 3.3 cauchy integral formula
�� 3.4 analytic functions and harmonic functions
�� exercise 3
chapter 4 series
�� 4.1 series of complex numbers and series of complex functions"
�� 4.2 power series
�� 4.3 taylor series
4.4 laurent series
�� exercise 4
chapter 5 residues
�� 5.1 isolated singularities
�� 5.2 residues
�� 5.3 application of residues in evaluating definite and improper integrals
�� exercise 5
chapter 6 conformal mappings
��6.1 the concept of conformal mapping
��6.2 fractional linear transformations
��6.3 condition of uniqueness
��6.4 some important fractional linear transformations
��6.5 mapping by some elementary functions
��exercise 6
chapter 7 fourier transform
��7.1 fourier integral and fourier integral theorem
��7.2 fourier transform and inverse fourier transform
��7.3 unit impulse functions
��7.4 generalized fourier transform
��7.5 the properties of fourier transform
��7.6 convolution
��exercise 7
chapter 8 laplace transform
��8.1 the concept of laplace transform
��8.2 the properties of laplace transform
��8.3 inverse laplace transform
��8.4 application of laplace transform
��exercise 8
answers to selected exercises
��exercise 1
��exercise 2
��exercise 3
��exercise 4
��exercise 5
��exercise 6
��exercise 7
��exercise 8
bibliography
appendix
index
��׃����(sh��)�c�e��׃�Q ���ߺ���
�w��Ӣ��Ů����������ʿ��ָ���̎����̌W���^���������I���I(y��)��W��WԺ��(sh��)�Wϵ�������F(xi��n)���ѽ�(j��ng)������ԭ�������I���I(y��)��W��׃����(sh��)�c�e��׃�Q�W�Ǝ��^������ʮ����g�̎����̌W��(j��ng)��S�������敳�N��(j��ng)��̲�������
- >
������
- >
���c�R
- >
ɽ����(j��ng)
- >
�Ї��vʷ��˲�g
- >
�����c����ʿ
- >
����?gu��)����x��Ѹ:����Ϧʰ
- >
���������~����Փ/���С��
- >
�ؑ��۬��z