�gӭ���R�ЈD�W(w��ng) Ո(q��ng) | ע��(c��)
> >>
��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ��

���] ��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ��

�����磺�����I���I(y��)��W(xu��)����������r(sh��)�g��2015-01-01
�_(k��i)���� 16�_(k��i) �(y��)��(sh��)�� 517
�� �D �r(ji��):¥37.9(4.2��) ���r(ji��)  ¥90.0 ��䛺�ɿ�����(hu��)�T�r(ji��)
����ُ(g��u)��܇(ch��) �ղ�
�_(k��i)������ ȫ��(ch��ng)���]
?�½������س���
��ܰ��ʾ��5�����ˆD��(sh��)��Ҫ�������β؛���󲿷֞�ȫ�£����ܷ�/�o(w��)�ܷ⣩����(g��)�e�D��(sh��)Ʒ��8-9�������п�
�Є�����(bi��o)ӛ����P(p��n)�ȸ�����ȫԔ��(x��)Ʒ���f(shu��)��>>
���(l��i)���Ǖ�(sh��)����>

��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ�� ���(qu��n)��Ϣ

��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ�� ����(sh��)��ɫ

�@���ɿ�����ɭ���f�����ġ����W(xu��)������--�����c��ģ(��3���̑B(t��i)�O(sh��)����Ӱӡ��)��Ӱӡ��momentumpress��chemicalsensors:simulationandmodelingvolume3:solid��statedevices.��Ҫ��(n��i)�ݞ飺microacoustic�ڻ����������Ľ�ģ����̖(h��o)̎��������̼�{�׹���ꇻ���(j��)�������cʰ�����ķּ�(j��)ģ�M��΢�ұ�������A(ch��)�Ļ��W(xu��)��������΢�C(j��)е��늚��w��������ģ����ģ���������Ϣ̎���ľۺ�����ӱ�ϵ�y(t��ng)���_(k��i)�l(f��)��

��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ�� ��(n��i)�ݺ�(ji��n)��

This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions.

��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ�� Ŀ�

preface
about the editor
contributors
6  modeling and signal processing strategies for microacoustic
   chemical sensors
     g. fischerauer
     f. thalmayr
       1 sensing principles of microacoustic chemical sensors
          i. 1 introduction
          1.2 microacoustic chemical sensors
       2 simulation and modeling of acoustic wave propagation,
          excitation, and detection
          2.1 analytical solution to the undisturbed wave propagation
                problem
          2.2 analytical solution to the wave excitation and detection
                problem
          2.3 finite-element method
          2.4 equivalent-circuit models
       3 sensor steady-state response
          3.1 perturbation approaches
          3.2 temperature effects
       4 sensor dynamics
          4.1 linear model
          4.2 state-space description
       5 sensor signal processing
          5.1 suppression of temperature effects
          5.2 signal processing based on linear analytical model
          5.3 wiener deconvolution
          5.4 kalman filter
          5.5 discussion of state-space-based signal processing
       6 summary
       7 nomenclature
     references
7  hierarchical simulation of carbon nanotube array--based
   chemical sensors with acoustic pickup
     v. barkaline
     a. chashynski
       1 introduction
       2 simulation levels of nanodesign
       3 prototype of hierarchical simulation system for nanodesign
       4 continual simulation of saw propagation in a layered medium
       5 structure of carbon nanotubes and adsoption properties of
          cnt arrays
          5.1 atomic structure of single- and multiwalled nanotubes
          5.2 quantum mechanical study of the adsorption of simple
                gases on carbon nanotubes
          5.3 molecular mechanics of physical adsorption of the
                individual molecules on the cnt
       6 simulation of a carbon nanotube array-based chemical
          sensor with an acoustic pickup
          6.1 molecular dynamics calculation of the elastic moduli of
                individual carbon nanotubes
          6.2 molecular dynamics study of distribution of adsorbed
                molecules in cnt array pores and calculation of acoustic
                parameters of cnt arrays
          6.3 saw phase velocity change due to molecular adsorption
                on cnt arrays in saw-based chemical sensors
       7 conclusion
      references
8  m-icrocantilever-based chemical sensors
     s. martin
     g. louarn
        1 introduction
       2 natural frequencies and normal modes of vibration
       3 experimental procedure
       4 natural frequencies of free rectangular cantilevers
          4.1 analytical calculations
          4.2 simulation with finite-element method
          4.3 experimental and modelling results on a rectangular
               beam
       5 natural frequencies of v-shaped microcantilevers
       6 natural frequencies of v-shaped coated cantilevers
       7 conclusion and prospects
       8 acknowledgments
     references
9  modeling of micromachined thermoelectric gas sensors
     s. udina
     m. carmona
     c. calaza
       1 principles of mtgs modeling
          1.1 introduction to the theory of heat transfer
          1.2 key thermal contributions and parameters involved in
                sensor operation and modeling
          1.3 influence of the packaging
       2 modeling and simulation methods
          2.1 complexity model levels
          2.2 analytical models
          2.3 finite-element method
          2.4 thermal conductivity of gases
       3 application to thermoelectric gas sensors
          3.1 case study
          3.2 analytical model
          3.3 static fem
          3.4 dynamic fem
          3.5 device optimization
     acknowledgments
     nomenclature
     references
10  modeling, simulation, and information processing for
   development of a polymeric electronic nose system
     r. d. s. yadava
       1 introduction
       2 sensor array approach
          2.1 system characteristics
          2.2 sensing platform and system design
       3 sensor transient approach
       4 design and modeling of saw sensing platform
          4.1 generic sensor model
          4.2 designing a saw platform for mass sensitivity
          4.3 designing a saw platform for multifrequency sensing
       5 vapor solvation, diffusion, and polymer loading
          5.1 solvation model and data processing
          5.2 sorption kinetics and transient signal model
       6 data mining and simulation for polymer selection
          6.1 case study of explosive vapor detection
          6.2 case study of body-odor detection
       7 optimizing data processing methods
          7.1 transient signal analysis
          7.2 steady-state sensor array response analysis
          7.3 enhancing sensor intelligence by information fusion
          7.4 simultaneous recognition and quantitation
       8 conclusion
     acknowledgments
     references
index
չ�_(k��i)ȫ��

��3�� �̑B(t��i)�O(sh��)�� �ƒ�(c��)-���W(xu��)������:�����c��ģ-Ӱӡ�� ���ߺ�(ji��n)��

������ɭ���f��Korotcenkov��G.���� received his Ph.D. in Physics and Technology of Semiconductor Materials and Devices in 1976 and his Habilitate Degree ��Dr. Sci.�� in Physics and Mathematics of Semiconductors and Dielectrics in 1990. He was for many years the leader in the Gas Sensor Group at the Technical University of Moldova. He is currently a research professor at: Gwangju Institute of Science and Technology�� in Gwangju�� Republic of Korea. Dr. Korotcenkov is the author of five previous books and has authored over 180 peerreviewed papers. His research has received numerous awards and honors�� including the Award of the Supreme Council of Science and Advanced Technology of the Republic of Moldova.

���o(w��)�u(p��ng)Փ����
��(sh��)�����]
���(l��i)���N(xi��o)
����픲�
�ЈD�W(w��ng)
�ھ��ͷ�